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1 Basics of category theory
Category theory allows one to take a general view of mathematics wholly, providing uniform
definitions for a wide variety of concepts in different mathematical fields, and proving theorems
abstract enough to be applied to a large section of mathematical theories while being powerful
enough to be significant in most of these theories. The basic power of category theory comes
from the focus on how mathematical objects interact with other objects of a similar kind (groups
with groups, topological spaces with topological spaces) instead of focusing on the details of the
implementation of these objects into set theory.

1.1 Categories and functors

Definition 1.1 (Category). A category is a collection of objects and arrows or morphisms that
point from one object to another as well as a composition operator which composes two arrows
f : A → B and g : B → C into g ◦ f : A → C with some structural properties:

i. Composition is associative.

ii. Every object A admits an arrow idA which functions as an identity for composition.

A category generally cannot be fit into sets, hence the use of ‘collection’ in the definition.
Some categories have collections of objects or arrows that are proper classes. The categories for
which the collection of arrows between any two objects is a set are called locally small in this
case, the set of morphisms between any two objects A and B is called a hom-set and is written
as homC (A,B) omitting C when it is obvious. Categories where the collection of all arrows
(and thus of all objects since any object admits at least one distinct endomorphism) is a set is
called a small category. One example of a category which is not small, but is locally small, is
the category Set of sets whose objects are sets and whose arrows are functions between sets,
with their usual composition. The collection of functions between two sets is indeed a set itself,
but the collection of all sets is a proper class.

Definition 1.2 (Functor). If C and D are two categories, a functor F : C → D is a map from
the objects of C into the objects of D and from the morphisms of C into the morphisms of D
such that a morphism f : A → B from A to B in C is mapped to a morphism Ff : FA → FB
from the image of A to the image of B.

Functors are supposed to satisfy some intuitive coherence conditions with the composition
structure of the categories as well:

i. For an object A of C , F (idA) = idF (A).

ii. For arrows f : A → B and g : B → C in C , F (gf) = F (g)F (f).

The concept of a category, that is, objects with morphisms between then satisfying these ba-
sic properties generalizes the concepts of homomorphisms between many kinds of mathematical
objects, but can be even more general.

For example, morphisms of sets are best considered as simple functions, giving us the cat-
egory Set. On the other hand, while one can make from groups a category with morphisms
being any function, it is not very useful, and the more intuitive approach would be to restrict
morphisms in the category to morphism (homomorphisms) of groups. This can be done because
the identity function is a homomorphism and the composition of two homomorphisms is also a
homomorphism. We obtain then the category Grp of groups.

Two notable examples of functors can be given between Set and Grp.
First, there is a trivial functor U : Grp → Set called a forgetful functor which ‘forgets’

that the objects of Grp are groups and maps a group (G, ·) to its underlying set G. The
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homomorphisms of groups are mapped to themselves as functions also ‘forgetting’ that they
respected any group structure. While this functor seems useless, it is related to another much
more important functor, F : Set → Grp, the free group functor which maps a set S to the free
group over S and maps any function from S to another set R into a homomorphism between
the corresponding free groups, this is done by ‘dismantling’ formal products and applying the
function on each of the factors of the product separately.

Sometimes, morphisms are not functions at all. For example, for an preorder R on a set X,
we can define a category with the elements of X as objects and morphisms representing the ≤
relation. Such categories are called poset categories and have certain special properties that are
inherited from the order. For example, hom-sets are at most a singletons.

As we can see, functors are morphisms of categories. Hence, we can define the category
Cat of all small (to avoid Russel’s paradox!) categories with objects being small categories and
arrows being functors between them.

1.2 Natural transformations

There is also a concept of homomorphisms between functors: a natural transformation. Functors
from a fixed category C to fixed category D along with natural transformations between them
form yet another category, the category of functors from C to D . Such categories will be
important later on, especially in the case where C = D and we are dealing with the category
of endofunctors of C .

Definition 1.3 (Natural transformation). If C ,D are categories and F,G : C → D are functors
between them, a natural transformation η : F → G is a family of morphisms of D . For each
object A of C , η has a ‘component’ ηA which is a morphism in D from F (A) to G(A).

We say the transformation is natural because it satisfies a ‘naturality’ property. Naturality
is best represented by ‘diagrams’ which are said to ‘commute’, meaning that all possible paths
in the diagram are equal. In this case, for a morphism f : A → B in C , η is required to make
the following diagram commute.

F (A) G(A)

F (B) G(B)

ηA

F (f) G(f)

ηB

This condition should not be surprising: just as group morphisms are expected to preserve
the group structure, functor morphisms are expected to preserve the functorial structure, that
is, how the functor acts on morphisms of the category C .

Invertible natural transformation are called natural isomorphism and they play a big role in
the parts to come.

1.3 Duality

Definitions, theorems, and proofs in category theory never ‘look inside’ of objects meaning
that we never talk about what the objects and the morphisms actually represent. All those
definitions, theorems, and proofs remain valid if we simply flip all the arrows in the definitions,
theorems, and proofs.

Here’s an example of a dual definition:

Definition 1.4 (Initial object). An object A in a category C is initial if for any object B ∈ C ,
there is a unique morphism from A to B.

Definition 1.5 (Terminal object). An object A in a category C is terminal if for any object
B ∈ C , there is a unique morphism from B to A.
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Often, dual definitions are denoted by prefixing ‘co-’ to the name, so a terminal object can
also be called a co-initial object.

Terminal objects are necessarily unique up to isomorphism, that is, up to invertible mor-
phisms. Indeed, if T and T ′ are two terminal objects, then by the terminality of T , there is a
unique map f from T ′ to T , and by the terminality of T ′, there is a unique map g from T to T ′.
Those maps can then be composed to form endomorphisms g ◦ f of T and f ◦ g of T ′. However,
by the fact that both T and T ′ are terminal, the only endomorphisms possible for T and T ′ are
the identity endomorphisms. Hence, f ◦ g = idT ′ and g ◦ f = idT , and T and T ′ are isomorphic.

The fact that an arrow which is an isomorphism remains an isomorphism if we flip it reflects
the fact that the dual of a terminal object, that is, an initial object, is also unique up to
isomorphism.

1.4 Adjunctions

1.4.1 Definition through hom-functors

Often, functors F : C → D and G : D → C are almost inverses, or in some sense, inverses
in ‘spirit’. For example, if C is the category Grp of groups and D is the category Set of
sets. There is a functor U : Grp → Set called the forgetful functor which maps a group G to
the underlying set of G and a group homomorphism f to itself seen only as a function of the
underlying sets. There is another functor F : Set → Grp called the free functor which maps a
set X to the free group on X. While F and U are clearly not inverses (for example U(F (X))
is bigger than X and if G isn’t a free group, F (U(G)) is not even isomorphic to G), there is a
sense in which they do inverse operations. One makes of a group the most natural related set,
and the other makes of a set the most naturally related group. The formal way to describe this
relation is through adjunctions of functors.

Definition 1.6 (Adjoint functors). Given categories C and D and functors F : C → D and
G : D → C , we say that F is left-adjoint to G (and G right-adjoint to F ) when there is an
natural isomorphism between the functors Hom(F (−),−) and Hom(−, G(−)) as functors from
C × D to Set (for C and D locally small). An adjunction is denote F ⊣ G.

It’s common to see this written as, for A ∈ C and B ∈ D , there is a bijection which is
natural in A and B.

Hom(F (A), B) ∼= Hom(A,G(B)).

1.4.2 Definition through units and counits

Another way to see adjunctions which puts the focus on the idea that the functors involved are
almost semi-inverses is the following.

Definition 1.7 (Adjoint functors). Given categories C and D and functors F : C → D and
G : D → C , F ⊣ G if there are natural transformations:

η : idC → GF

ε : FG → idD

that satisfy the triangle laws:

F FGF

F

Fη

idF

εF

G GFG

G

ηG

idG

Gε
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Under these notations, η is called the unit of the adjunction and ε the counit.

If F and G were actually inverses, then η and ε would be isomorphisms as well. The
unit/counit definition will generally be the preferred definition in this text, but before we use
it, we need to show that these two definitions are indeed equivalent.

Proof. Assuming first the hom-functor definition, let ϕA,B : Hom(F (A), B) → Hom(A,G(B))
be the given natural isomorphism. We define ηA = ϕA,F (A)(idF (A)) and we prove that η is
natural.

In fact, the naturality of ϕ gives the following commutative diagram for f : A → A′ in C .

Hom(F (A), F (A)) Hom(F (A), F (A′)) Hom(F (A′), F (A′))

Hom(A,GF (A)) Hom(A,GF (A′)) Hom(A′, GF (A′))

(Ff◦−)

ϕA,F (A) ϕA,F (A′)

(−◦Ff)

ϕA′,F (A′)

(GFf◦−) (−◦f)

Notice that in this diagram, Ff ◦ idA = Ff = idA′ ◦ Ff . Therefore, ϕA′,F (A′)(idF (A′)) ◦ f =
GF (f)◦ϕA,F (A)(idF (A)). In other words, ηA′ ◦f = GF (f)◦ηA, which is the naturality condition
for η.

A B

GF (A) GF (B)

f

ηA ηB

GF (f)

Similarity, define εB = ϕ−1
G(B),B(idG(B)) and prove its naturality with the following diagrams.

Hom(G(B), G(B)) Hom(G(B), G(B′)) Hom(G(B′), G(B′))

Hom(FG(B), B) Hom(FG(B), B′) Hom(FG(B′), B′)

(Gf◦−)

ϕ−1
G(B),B

ϕ−1
G(B′),B

(−◦Gf)

ϕ−1
G(B′),B′

(f◦−) (−◦FGf)

FG(A) FG(B)

A B

FG(f)

εA εB

f

We still need to show the triangle laws which we will leave to prove during our proof of the
converse

Conversely, suppose we have the unit and counit satisfying the triangle laws. Define a func-
tion ϕA,B : Hom(F (A), B) → Hom(A,G(B)) by ϕ(f) = G(f) ◦ ηA and ψA,B : Hom(A,G(B)) →
Hom(F (A), B) by ψ(g) = εB ◦ F (g)

ψA,B(ϕA,B(f)) = εB ◦ F (G(f) ◦ ηA) (1)
= εB ◦ FG(f) ◦ F (ηA) (2)
= f ◦ εF (A) ◦ F (ηA) (3)
= f (4)
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ϕA,B(ψA,B(g)) = G(εB ◦ F (g)) ◦ ηA (5)
= G(εB) ◦GF (g) ◦ ηA (6)
= G(εB) ◦ ηF (B) ◦ g (7)
= g (8)

Steps 1 and 5 follow from the formulae given for ϕ and ψ, the steps 2 and 6 follow from
the functoriality of F and G respectively, and the steps 3 and 7 follow from the naturality of ε
and η respectively. Lastly, given the formulae, the functoriality of F and G and the naturality
of ε and η, the calculations show that ψ and ϕ are inverses if and only if the triangle laws are
satisfied (steps 4 and 8).

The direction unit/counit implies hom-functor has been proven, and what remains for the
direction hom-functor implies unit/counit is to show the formulae for ϕ and ψ = ϕ−1.

In fact, those follow from the commutativity of the following two diagrams at the identities
idF (A) and idG(B) respectively.

Hom(F (A), F (A)) Hom(F (A), B)

Hom(A,GF (A)) Hom(A,G(B))

f◦−

ϕA,F (A) ϕA,B

G(f)◦−

Hom(G(B), G(B)) Hom(A,G(B))

Hom(FG(B), B) Hom(F (A), B)

−◦g

ψG(B),B ψA,B

−◦F (g)

Example 1.1 (Free/forgetful adjunctions). Some of the most common (and simple) adjunctions
are the free/forgetful adjunctions for a given algebraic structure. It’s also a good example of
how adjoints of simple or even trivial functors can be much more complex and useful. We will
look at the example of the forgetful functor U : Grp → Set which maps a group G to the
underlying set of G (that is, forgets the group structure of G). A morphism is Grp, that is, a
group homomorphism, is mapped by U to itself seen as a function of sets.

The forgetful functor admits a left adjoint F : Set → Grp which is actually the free functor
mapping a set X to the free group F (X) on X given by formal words in the alphabet of
{x, x−1 : x ∈ X} quotiented by the relation xx−1 ∼ 1. Any function f : X → Y induces a
unique homomorphism Ff : FX → FY extending f defined at the generating set X of FX.
Ff : y1 · · · yn → f̃(y1) · · · f̃(yn) where ∀i, yi{x, x−1 : x ∈ X} and if x ∈ X,

f̃ : x → f(x)
x−1 → f(x)−1

We will prove that F ⊣ U using the unit/counit definition as this provides more insight into
the adjunction by constructing two natural transformations η, ε.

η : X → UF

x → x ∈ F (X) as a set
ε : FU(G) → G)
g±11

1 · · · g±n1
n → g±11

1 · · · g±n1
n evaluated in G

We verify the triangle laws where we denote, for clarity, the formal singleton word x by (x).
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U(G) UFU(G)

U(G)

ηU(G)

idU(G)
UεG

g (g)

g

ηU(G)

idU(G)
UεG

F (X) FUF (X)

F (X)

FηX

idF (X)
εF (X)

x±11
1 · · ·x±n1

n (x1)±11 · · · (xn)±n1

x±11
1 · · ·x±n1

n

FηX

idF (X)
εF (X)

Both of these diagrams express the fact that the evaluation of (x) is x itself, but in two
different ‘axes’. We will see later that this expresses the left and right unit laws for the monad
UF : Set → Set.

Often, such ‘forgetful’ functors have left adjoints which are the ‘free’ functors for a given
structure. Rarely, those forgetful functors can also have right adjoints. This is the case for
topological spaces which has the discrete topology as left adjoint and the indiscrete topology as
right adjoint.

1.4.3 Adjunctions in 2-categories

It turns out that the concept of adjunctions can be generalized to more than functors to more
general morphisms in a category. The necessary condition for the generality to work is the
possibility to form categories of morphisms like we do for functors; hence the definition below.

Definition 1.8 (2-category (simplified)). A 2-category C consists of a collection of objects, and
for each pair of objects, A,B ∈ C , there is a hom-category Hom(A,B) such that for each triplet
A,B,C of objects, we have a composition functor ◦ : Hom(B,C) × Hom(A,B) → Hom(A,C),
and each category Hom(A,A) admits an identity object idA such that the composition with this
object on the right (resp. left) is the identity functor on Hom(A,B) (resp. Hom(B,A)). The
composition functor must also be associative.

Note that this definition is simplified and relatively inelegant, but a proper definition can
only be given with an understanding of monoidal categories in mind as it involves the associator
and unitors of the monoidal category Cat.

The idea is that in this category, there are not only morphisms between objects, but mor-
phisms between morphisms as well, called 2-morphisms. Categories, functors, and natural
transformations form a 2-category, and 2-categories are generalizations of that structure.

In the context of 2-categories, we can define adjoint 1-morphisms F ⊣ G where F : C → D
as having a unit 2-morphism η : idC → GF and a counit 2-morphism ε : FG → idD satisfying
the triangle laws. Then, adjoint functors are simply adjoint (1-)morphisms in the 2-category
Cat.

1.5 Representable functors

Often, it may be difficult to work in general categories because morphisms can be tricky to
pinpoint and the internal structure (if any) of objects is typically inaccessible. It is, however,
easier if we can somehow see the category within Set. To make this reasonable, we will stick
to locally small categories (that is, categories where the hom-functor is defined into Set.) It’s
often possible to define very many interesting functors from a locally small category C into
Set. Sometimes the functors are covariant F : C → Set, sometimes they are contra-variant
F : C op → Set; contravariant functors into Set are called presheaves. For example, one
interesting presheaf on Top is the functor F : Topop → Set, which, to a topological space

8



X, maps the underlying topology (the set of open sets of F ) and to a continuous function
f : X → Y , maps Ff the function on open subsets of Y mapping V into its open pre-image
f−1(V ).

If C is locally small, there are two particular special kinds of covariant and contravariant
functors that can be defined on C , the hom-functors out of and into a fixed object. Let A be an
object of C . Then the (covariant) functor hA = Hom(A,−) is Set-valued, and the contravariant
functor hA = Hom(−, A) is a presheaf. If a given Set-valued functor F is isomorphic (in the
category of functors C → Set) to hA for some A ∈ C , we say that F is representable, and
represented by A and the natural isomorphism found hA → F . If F is contravariant, it is
representable if it is isomorphic to hA for some A ∈ C .

1.6 Yoneda’s lemma

Following the discussion in 1.5, we find a very important result: if hA ∼= hB, then A ∼= B. This
encapsulates the idea that, if two objects appear the same (hA ∼= hB) in a category, then they
are the same (A ∼= B), up to isomorphism.

The result is a corollary of a more general result: the Yoneda lemma.

Lemma 1.1 (Yoneda). Let C be a locally small category and F : C → Set. Then for any
A ∈ C ,

Nat(hA, F ) ∼= F (A).

Proof. We will prove the dual.
Let η ∈ Nat(hA, F ), then the following naturality diagram commutes for any f : A → B in

C .

Hom(A,A) Hom(A,B)

F (A) F (B)

ηA

(f◦−)

ηB

F (f)

This diagram is in Set, so we are dealing with sets and functions between sets. By chasing
the element idA ∈ Hom(A,A) in the diagram, we obtain the following.

ηB(f) = F (f)(ηA(idA)).

In other words, η is completely defined by its value at ηA(idA), so that the function η 7→
ηA(idA) is injective. Furthermore, for any a ∈ F (A), it’s possible to define ηA(f) = F (f)(a),
and then define al of η using the formula above to obtain a natural transformation such that
ηA(idA) = a. In other words, we also have surjectivity.

A dual proof gives Nat(hA, F ) ∼= F (A) when F is contravariant.

Corollary 1.1. If hA ∼= hB, then A ∼= B.

Proof. We have Nat(hA, hB) ∼= hB(A) = Hom(A,B), which makes h− a covariant full and
faithful functor. Then, if ϕ : hA → hB is an isomorphism, then there exists f : A → B such
that ϕ = F (f) and g : B → A such that ϕ−1 = F (g) by the fullness of F . But then, F (gf) =
F (g)F (f) = idhA . By the faithfulness of F , gf = idA. Similarity, F (fg) = idhB =⇒ fg = idB,
so A ∼= B.

Remark 1.1. Of course, by looking at C op, which is also locally small, we can prove that
hA ∼= hB =⇒ A ∼= B as well.
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1.7 Cones, cocones, limits, colimits

Definition 1.9 (Cone). If C is a category and F a functor from another category I to C , then
a cone η from A ∈ C to F is a natural transformation from the constant functor A : I → C to
F .

The functor F is often called a diagram and the category I is the shape of the diagram.
Since a cone is a natural transformation from the constant functor A, it’s equivalent to a family
of morphisms ηα from A to objects F (α) for all objects α ∈ I which satisfies a naturality
principle: for f : α → β in I , the following diagram commutes:

A

F (α) F (β)

ηα ηβ

Ff

Therefore, a cone is characterized by its vertex (A) and the arrows from that vertex to each
of the objects in the image of F . Cones into F form a category where objects are cones and
morphisms between a cone of vertex A and morphisms ηα for α ∈ I and a cone of vertex B
and morphisms να for α ∈ I consists of a morphism f from A to B such that for each α ∈ I ,
the diagram below commutes.

A B

F (α)
ηα

f

να

In other words, the cone on A factors through the cone on B.

Definition 1.10 (Limit). A limit of a diagram F : I → C is a terminal object in the category
of cones into F .

Being a terminal object, a limit is necessarily unique up to isomorphism. In fact, terminal
objects are themselves limits of a diagram with no arrows. Similar notions of cocone and colimit
follow by duality, and colimits are, just like limits, unique up to isomorphism.

1.8 Special limits and colimits

Certain special cases of limits and colimits have their own names because of how important
they are independent of the more general notion of limits and colimits. We present a couple
here.

Definition 1.11 (Discrete category). For any set X, there is a category whose objects are
elements of X and whose only morphisms are the identity morphisms for each element. This is
the discrete category on X.

Definition 1.12 (Product). If C is a category and (Ai)i∈I is a family of objects of C indexed
by I, then the product Πi∈IAi, if it exists, is the limit of the diagram i 7→ Ai from the discrete
category on I into C . In other words, the product is a limit that disregards arrows.

Example 1.2 (Product group). In Grp, the categorical product of G and H is the product
group G×H with the usual multiplication operation.

Proof. We have projection group morphisms π1 : G × H → G and π2 : G × H → H and any
pair of group morphisms f : X → G and g : X → H define a unique group morphism, namely,
f × g : X → G×H through which f and g factor with the projections.
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More generally, product algebraic structures correspond to categorical products.
Example 1.3 (Product topology). Consider N copies of the real line R. There are at least two
distinct ways to define a topology on the infinite product RN: the box topology which we will
denote by τ□, and the product topology which we will denote by τπ. The box topology is the
topology with basis any product of open sets Ui. On the other hand, the product topology has
basis products of open sets Ui where only finitely many of the Ui are not R itself. It is said,
in most introductory topology textbooks, that the box topology ‘simply doesn’t behave nicely
enough’ and that the product topology behaves much better. The reason for that is that the
product topology is the categorical product in Top while the box topology is just another cone,
which is generally not the universal cone corresponding to the product.

In topology, this is expressed slightly differently: both the product and the box topologies
make the projections continuous (are cones) but the product topology is the coarsest (universal)
one for which projections are continuous. In the general case, the product topology is strictly
coarser than the box topology, which means that the identity function taken from X with the
product topology to X with the box topology, which is the only candidate for the unique map
making the universality diagram for ‘the box topology is the categorical product’ commute, is
actually not continuous, that is, does not exist in Top. Hence, the box topology cannot, in
general, be the categorical product, and categorical properties implied by being the categorical
product do not apply to the box topology, hence, ‘it behaves badly.’
Definition 1.13 (Equalizer). If C is a category and A,B are objects of C with morphisms

f, g ∈ C (A,B), the equalizer of f and g is the limit of the diagram A
f
→
→
g
B in C .

Example 1.4 (Kernel). In Grp, if G,H are groups, and f : G → H is a group homomorphism,
then the equalizer of f and the trivial homomorphism 1 : G → H; g 7→ 1H is (isomorphic
to) the kernel of f . In fact, Ker f and the injection into G is a cone commuting f and 1,
since f(k) = 1H = 1(k) for all k ∈ K, and it is universal since if K ′, i is another cone, then
f(i(k′)) = 1H so that i factors through Ker f . By the uniqueness of limits, any other group
satisfying the limit conditions is isomorphic to Ker f .

Notions of Coproduct and Coequalizer follow by duality, and they do agree with usual notions
of coproduct (direct sum, disjoint union, LCM, etc...) and coequalizer (cokernel, for example).

1.9 General construction of limits and colimits

It turns out that finding products and equalizers is enough to find any limit.
Theorem 1.1 (Construction of limits from products and equalizers). If C is a category admit-
ting all products and all equalizers, then C also admits all limits. Let F : I → C be a diagram,
and consider the product

∏
i∈I o F (i) of the objects of the diagram F with the corresponding

projections pj : ∏
i∈I o F (i) → F (j). Then, the limit of F is obtained as the equalizer of the

following two maps.

∏
i∈I o F (i) ∏

f :i→j
i,j∈I o

F (j)

∏
f :i→j
i,j∈I o

F (f)◦pi

∏
f :i→j
i,j∈I o

pj

Example 1.5 (Pullback). A pullback in a category C is the limit of a diagram of the form

A

B C

f

g

11



Let’s position ourselves in the category Set and where we know how to construct products
(Cartesian products) and equalizers. The equalizer of f : X → Y and g : X → Y in Set is the
subset of X defined by {x : x ∈ X, f(x) = g(x)}.

The pullback will be a set D with functions p1 : P → A and p2 : P → B making the
following diagram commute.

D A

B C

p1

p2 f

g

We begin by constructing the products mentioned in the theorem.

A×B × C C × C
(f◦πA)×(g◦πB)

(πC×πC)

Next, we find the equalizer of these two maps. This will be the subset of A × B × C with
elements (a, b, c) with f(a) = c and g(b) = c. In other words, it’s isomorphic to the subset of
A×B of pairs (a, b) with f(a) = g(b).

1.10 Interaction with adjunctions

Limits and colimits provide yet another reason to care about adjunctions of functors: functors
having certain adjoints preserve limits/colimits.

Theorem 1.2 (Continuity of right adjoints). If C ,D are categories with functors F : C → D
and G : D → C that are adjoint F ⊣ G. And if L : I → D has a limit limL ∈ C , then GL has
a limit and G(limL) = limGL.

Theorem 1.3 (Cocontinuity of left adjoints). Dually, if C ,D are categories with functors
F : C → D and G : D → C that are adjoint F ⊣ G. And if L : I → C has a colimit
colimL ∈ C , then FL has a colimit and F (colimL) = colimFL.

Example 1.6 (Preservation of products for groups). Since the forgetful functor U : Grp → Set
is right adjoint to the free group functor F : Grp → Set, it preserves limits. In particular,
it preserves products meaning that if G and H are groups and K is their product, then the
underlying set U(K) of K is the product of the underlying sets of G and H. In other words,
K = G × H as a set. The fact that free/forgetful adjunctions are so common for set-based
algebraic structures explains, purely categorically, why so often the product algebraic structure
is constructed from the Cartesian product of the underlying sets.

Example 1.7 (U : Grp → Set has no right adjoint). Let G and H are groups, then the set
U(G) ⊔ U(H) which is the coproduct of U(G) and U(H) does not (generally) define a group
with injective group homomorphisms from G and H. In fact, the coproduct of G and H is also
the product G×H. In the case of G the trivial group and H = Z4, G×H = G⊕H is of order
4, but U(G) ⊔U(H) has cardinality 5. This means that U does not preserve colimits; therefore,
it is not left adjoint to any functor (a.k.a. U does not admit a right adjoint).

Example 1.8 (Products and coproducts in Top ). The category Top of topological spaces and
continuous maps admits a forgetful functor into Set which has both left and right adjoints. We
expect that functor to then preserve both limits and colimits. This is indeed the case demon-
strated by the following examples: if X,Y are topological spaces, the (categorical) product
space of X and Y is indeed the Cartesian product X × Y endowed with the corresponding
topology. The categorical coproduct of X and Y consists of the space that ‘places X and Y
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next to each other, disjoint’, that is, it has underlying set the disjoint union (coproduct in Set)
of X and Y and the topology is the topology of X and the topology of Y embedded as a clopen
partition of the coproduct space.

The fact that the forgetful functor from topological spaces has both left and right adjoints
explains the compatibility of many set operations with the topologies involved (e.g. the disjoint
union of topological spaces is a topological space encompassing the spaces as subspaces, while
the disjoint union of groups is not generally a group containing the original groups as subgroups.)

2 Monoidal categories
A monoidal category is a category with some form of extra ‘monoid’ structure on the objects.
That is, there is a way to ‘multiply’ objects of the category which is associative, and this
multiplication has some ‘identity’. Monoidal categories are very important in computer science
and we will divert our attention to them now.

The key to properly defining a monoidal category C is to properly define multiplication and
identity. Multiplication should be a sort of binary map on the objects of a category. A good way
to define that while respecting the categoric structure is to make multiplication is a bi-functor
into C , that is, a functor from the product category C × C into C . More explicitly,

Definition 2.1 (Product category). If C and D are categories, then there is a category C × D
whose objects are pairs (c, d) of objects c ∈ C and d ∈ D and whose morphisms are pairs (f, g)
of morphisms f in C and g in D .

We will denote this multiplication as ⊗ and the identity for this multiplication will be an
object of C which we will denote as 1.

Of course, this does not yet resemble a monoid as no laws are required to be respected yet.
Naively, we could impose that 1⊗C = C⊗1 = C for all C ∈ C and that A⊗(B⊗C) = (A⊗B)⊗C
for all A,B,C ∈ C . However, this is usually too strict since it’s not even satisfied in the category
of sets with the usual Cartesian product.1 Such a structure will be called a strict monoidal
category, but we will need to look at more general notions; we will have to replace equality with
(natural) isomorphism. This naturally leads us to impose the following natural isomorphisms.

Left unitor We require the existence of a natural isomorphism λ : (1⊗ (−)) → (−) called the
left unitor of the monoidal category. To clarify the notation above, (1 ⊗ (−)) : C → C is the
functor which maps an object A ∈ C to 1 ⊗A and a morphism f : A → B to id1 ⊗ f : 1 ⊗A →
1 ⊗B, and (−) is the identity endofunctor on C .

Right unitor The same applies to multiplication on the right. We have a natural isomor-
phism: ρ : ((−) ⊗ 1) → (−).

Associator Imposing associativity requires the existence of the associator natural isomor-
phism α : ((−) ⊗ (−)) ⊗ (−) → (−) ⊗ ((−) ⊗ (−)) with the intuitive order respected; in other
words, α has for components isomorphisms (A⊗B) ⊗ C → A⊗ (B ⊗ C).

We would like to be able to give a unique value to an expression of the form A1⊗A2⊗· · ·⊗An.
There are many ways to associate the multiplications, all of them are, of course, isomorphic;
however, once we are dealing with more than 3 objects, there are many different ways to compose
associators to obtain, a priori, distinct isomorphisms between the same two objects. Distinct
isomorphisms between the same objects pose a problem because, for instance, if the objects are
sets or set-like, we are unable to uniquely identify an element of one with an element of another,

1For example, N×(N×N) ̸= (N×N)×N as, for example, (0, (0, 0)) ∈ (N×(N×N)) but (0, (0, 0)) ̸∈ ((N×N)×N).
The two sets are, however, indeed isomorphic by the isomorphism (x, (y, z)) 7→ ((x, y), z) (among others).
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leaving us confused as to which isomorphism we should chose at any given moment. Therefore,
we impose the commutativity of some diagrams. We call those conditions of commutativity
‘coherence conditions’.

(A⊗B) ⊗ 1 A⊗ (B ⊗ 1)

A⊗B

αA,B,1

ρA⊗B
idA⊗ρB

(1 ⊗A) ⊗B 1 ⊗ (A⊗B)

A⊗B

α1,A,B

λA⊗idB

λA⊗B

((A⊗B) ⊗ C) ⊗D

(A⊗ (B ⊗ C)) ⊗D (A⊗B) ⊗ (C ⊗D)

A⊗ ((B ⊗ C) ⊗D) A⊗ (B ⊗ (C ⊗D))

αA⊗B,C,D

αA,B,C⊗idD

αA,B⊗C,D αA,B,C⊗D

idA⊗αB,C,D

Many mathematical structures appear under the framework of monoidal categories, most
notably, they appear as special objects of the category which are called monoids.

Definition 2.2 (Monoid). Given a monoidal category (C ,⊗, 1), a monad M is an object of
C with a ‘multiplication’ morphism µ : M ⊗ M → M and a unit morphism η : 1 → M .
Multiplication is associative with identity the unit. In other words, the following diagrams
commute.

M ⊗ (M ⊗M) (M ⊗M) ⊗M

M ⊗M M ⊗M

M

αM,M,M

idM ⊗µ µ⊗idM

µ

µ

1 ⊗M M ⊗M M ⊗ 1

M

η⊗idM

λM

idM ⊗η

ρM

Monoids are objects of the category that have an extra operation. Rings, for example, are
Abelian groups with an extra operation; they are, in fact, monoids in the category (Ab,⊗, 1)
of Abelian groups with their tensor product (as Z-modules). Let’s see how that works in detail.

If R is a monoid in Ab, then R is first an Abelian group. Then, there is a homomorphism
of groups µ : R ⊗ R → R. This means that if a, b, c ∈ R, then µ(a, (b + c)) = µ((a, b) + (a, c))
by the tensor product, and µ((a, b) + (a, c)) = µ(a, b) + µ(a, c). This proves distributivity on
the left. Distributivity on the right is obtained in a similar fashion. The associativity of µ is
provided in the definition of a monoid. Finally, the morphism η : 1 → M simply corresponds
to an element 1M ∈ M such that µ(1M , x) = µ(x, 1M ) = x.

3 Cartesian closed categories and their endofunctors
Definition 3.1 (Cartesian category). A Cartesian category C is a monoidal category (C ,⊗, 1)
where A⊗B is the product – in the sense of limits – of A and B.

In order for the definition to make sense, a Cartesian category must necessarily have all finite
products. Furthermore, it must be a symmetric monoidal category, that is, A⊗B ∼= B ⊗A for
all objects A,B ∈ C . The reason is that A⊗B is the categorical product of A and B which is
also the categorical product of B and A, so it is isomorphic to B ⊗A.
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Example 3.1. The category (Set,×, {0}) is a Cartesian category because A×B is indeed the
categorical product of A and B. It satisfies the universal property: for all C ∈ C having two
morphisms f : C → A and g : C → B, there exists a unique morphism uf,g : C → A× B such
that the diagram below commutes.

C

A×B

A B

f g
uf,g

π1 π2

Definition 3.2 (Closed symmetric monoidal category). In the context of a symmetric monoidal
category C , C is said to be closed when, for all A ∈ C , the functor − ⊗A : C → C has a right
adjoint denoted [A,−] : C → C .

A better intuition for what a closed symmetric monoidal category is is that it has ‘expo-
nential’ objects, or ‘internal hom-objects’, objects of the category C which behave, in a certain
sense like the set Hom(A,B). That sense is made precise by the adjunction above.

HomC (A⊗B,C)
fA,B,C∼= HomC (A, [B,C]).

The bijection fA,B,C is called currying (homage to Haskell Curry) and its inverse is called
uncurrying.

Definition 3.3 (Cartesian closed category). A Cartesian closed category is Cartesian and closed
as a symmetric monoidal category.

Example 3.2 (Set). Set is Cartesian closed with products being Cartesian products of sets
and the exponential object [A,B] being the set of functions from A to B.

Example 3.3 (Hask). Another example is the category Hask. The name Hask comes from
the programming language Haskell, which is itself named after Haskell Curry. Haskell is a pure
functional programming language meaning that programmed functions work the way math-
ematical functions work. Whenever a function is called on the same argument, it produce
the same result, and it always produces a result. On the contrary ‘functions’ in other lan-
guage can fail or produce different values depending on contexts (user input, state of storage
disks, network fetches, etc...). Functions in Haskell are always typed, that is, they operate on
pre-specified types of data. A type is somewhat analogous to a set. For example, the addi-
tion operator can be defined to have the type + : N × N → N. Another example function is
concatenate : [A] × [A] → [A] which concatenates two lists with elements of some type A.

The objects of Hask are types, and a morphism from A to B is a Haskell function f : A → B.
Hask is a Cartesian closed category: it has product types A×B and function types A → B.

3.1 Lambda calculus

Cartesian closed categories have enough structure to be interpreted a lot like the category of
types in a functional programming language. More precisely, Cartesian closed categories can
give meaningful interpretations to lambda calculus, meaning that there are ways to see objects
as types of certain elements and morphisms as functions of these elements. We say that (simply
typed) lambda calculus is the internal language of Cartesian closed categories.

To see that, let’s first describe lambda calculus formally and in detail.

15



3.2 Category of endofunctors, monads

In the latter part of this document, we will be interested in the Cartesian closed category Hask.
In Hask, endofunctors are very important as they represent well-behaved type constructors:
they allow us to construct new types of out existing types and allows to extend functions on
the new types.

Theorem 3.1. The category of endofunctors of any category C is a strict monoidal category
with tensor the composition of functors and unit the identity functor on C .

The category of endofunctors of a category is very important and the concept of monoids in
that category proves especially interesting, so interesting that it has its own name: a monad.

Definition 3.4 (Monad). A monad on C is a monoid in the category of endofunctors of C .

While the definition is phrased simply, it’s important to unwrap the details to observe
the complexity of the notion. Being a monoid, a monad is first and foremost an object of the
category [C ,C ], that is, a monad T is an endofunctor of C . Additionally, it has a multiplication
morphism µ : T ⊗T → T , that is, there is a natural transformation µ from T ⊗T = T ◦T = T 2

to T . There is also some identity morphism from the unit of [C ,C ], that is, there is a natural
transformation η : idC → T . The components of the natural transformations give us some extra
insight here.

From now on, we will only be looking at the category Hask of Haskell types and Haskell
functions between them. A monad T on Hask is then an endofunctor of Hask which, for every
type A, provides two functions: ηA : A → T (A) called return and µA : T (T (A)) → T (A) called
join. Being a monoid, a monad has to make some diagrams commute, namely, the unit should
function as a unit and multiplication should be associative. The diagrams associated are made
easier by the fact that the category of endofunctors is strictly monoidal.

idC ◦ T T T ◦ idC

T ◦ T T T ◦ T

ηT idT Tη

µ µ

(T ◦ T ) ◦ T T ◦ (T ◦ T )

T ◦ T T ◦ T

T

µT Tµ

µ µ

Those diagrams are sometimes called ‘monad laws’.
An often useful analogy for monads in programming is that of a ‘context’ in which data

lives. Under this analogy, return ‘returns’ a value, that is, wraps it in the context, and join
‘joins’ two contexts into one. An example monad we will look at is the Maybe monad.

The Maybe monad maps types A to MA whose elements are of the form Nothing or Just
a with a of type A. We will simplify the notation by denoting Nothing as ∅ and Just a as
η(a) (η will be the return of the monad). Functions f : A → B are mapped to functions
Mf : MA → MB using the following construction:

(Mf)(a′) =
{

∅ a′ = ∅
η(f(a)) a′ = η(a)

.

The Maybe monad helps represent operations that can fail. For example, the division oper-
ation on reals would ideally be of type / : R × R → R. However, division by 0 can fail, so we
can instead give it the type / : R × R → MR, and define division as such:

a/b =
{
η(a÷ b) b ̸= 0
∅ b = 0

.

16



A problem quickly arises from the fact that the co-domain is a different type that the domain,
as it’s impossible to compose these functions. This is where the monadic structure of Maybe
comes in handy. With M being a functor, f : A → MB can produce Mf : MA → MMB.
Composing Mf with µB gives us µB ◦ Mf : MA → MB. In other words, the monadic
structure of M allows us to extend any possibly failing function on A to a possibly failing
function on MA. The monadic laws ensure that when the computation of MA fails (we have
∅), so does the composition with Mf . In other words, (Mf)(∅) = ∅. The function that
maps f : A → MB to µB ◦ Mf is called bind, and is generally denoted as the operator
>>=: MA → (A → MB) → MB. The notation comes from the analogy of monads being
boxes and environments, x >>= f ‘forces’ x which is wrapped in a box into f which only
accepts unwrapped values.

In more mathematical terms, bind gives a way to compose f : A → MB with g : B → MC.
g ◦M f = (>>= g) ◦ f . For each type A there is a unique function that behaves like an identity
for this composition, denoted as ◦M , namely ηA : A → MA.

Example 3.4 (Division by 0). Suppose we would like to use the function above to compute
((54/25)/0)/3. We would at first want to calculate 54/25. Since the division is successful, we
will obtain η(54 ÷ 25), so far so good. Next, we want to (try to) divide that by 0. But it is
not possible to use the type MN with the division as defined. Therefore, we will use the bind
operation: (54/25) »= (λ x. x/0) where λ is used to denote a function x 7→ x/0. Next, the
result of that is supposed to be divided by 3, so we repeat the same operation and compute
((54/25) »= (λ x. x/0)) »= (λ x. x/3).

Certain programming languages that employ monads attempt to make this composition
cleaner by introducing special notations for it. In Haskell, we can use the do notation to hide
the issues of bind behind a notation of ‘extraction’ out of a monad <-.
do :

a <− 54/25
b <− 54/0
b/3

3.3 Kleisli category

Overall, this composition, along with ηA for each A, gives rise to a category denoted as CT where
C is the underlying category and T is the monad in question and called the Kleisli category of C
associated with T . CT has the same objects as C , but a morphism f̃ : A → B in CT corresponds
to a morphism f : A → TB. This construction allows us to define a functor F : C → CT which
is the identity of objects and which, for each morphism f : A → B associates the morphism
F (f) = ηB ◦ f in CT

In a sense, the Kleisli category is just C but where functions always wrap their values in
the environment T after they’re done computing them. We might Since T is a monad, it also
makes sense to ask for wrapping values before computing them, that is, making the domain of
arrows be in the image of T . We can then define another functor G : CT → C which will do
this pre-wrapping.

GA = TA

Gf = µA ◦ Tf.

3.3.1 Kleisli adjuction

Notice then that F and G factor the monad T through the category CT as GF = T . Fur-
thermore, the existence of η : idC → GF hints at an adjunction with unit η and counit some
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natural transformation ε : FG → idCT
. Let’s attempt to construct ε. For each type A in the

Kleisli category, εA : FGA → A is a morphism in CT , that is, it corresponds to a morphism
εA : TA → TA in C . We can chose this morphism to be the identity morphism of TA, so that
εA = µA ◦ ηTA, so ε = µηT .

We can finally verify the triangle identities for the adjunction.

F FGF

F

Fη

idF

εF in CT arises from

A T (T (A))

T (A)

ηT (A)ηA

ηA
µA in C .

G GFG

G

ηG

idG

Gε in C arises from

T (A) T (T (A))

T (A)

ηT (A)

idT (A)
µA in C .

3.3.2 Kleisli construction of a monad out of an adjunction

In fact, it turns out that every adjunction has an associated monad. Let F ⊣ G be an adjunction.
Then GF : C → C is a monad of C . The unit of GF is the unit of the adjunction η : idC → GF ,
and the multiplication µ : GFGF → GF is defined as µ = GεF .

C

D

F G

The verification of the monad laws gives some extra insight on the construction, so we will
do that in detail.

idC ◦ T T T ◦ idC

T ◦ T T T ◦ T

ηT idT Tη

µ µ

(T ◦ T ) ◦ T T ◦ (T ◦ T )

T◦ T ◦ T

T

µT Tµ

µ µ

translate to

idCGF GF GFidC

GFGF GF GFGF

ηGF idGF GFη

GεF GεF

(GFGF )GF GF (GFGF )

GFGF GFGF

GF

GεFGF GFGεF

GεF GεF

The diagram for the unit splits in two:

GF

GFGF GF

ηGF
idGF

GεF

and
GF

GF GFGF
idGF

GFη

GεF
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Which follow from the triangle identities for the adjunction F ⊣ G.
And the diagram for associativity is obtained by composing the diagram for the naturality

of ε on itself with G on the left and F on the right (rotate your head 45◦ to see it better).

FGFG(A) FG(A)

FG(A) A

FG(εA)

εF G(A) εA

εA

3.3.3 Application on the free/forgetful monoid adjunction

Return to the notations of 3.3.2 with C = Set the category of sets and their functions, D the
category of monoids and their homomorphisms, F the free monoid functor, and G the forgetful
functor. The unit of this adjunction is η : idC → GF which, for each set X provides the function
ηX : x 7→ [x] the formal single-letter word. And the counit ε : FG → idD has components at a
monoid M the evaluation homomorphism into M from the free monoid obtained by constructing
formal words from the underlying set of M .

The constructed monad T : C → C is the functor mapping a set X to the set of formal words
with alphabet X. The multiplication µX : T (T (X)) → T (X) sends a formal word of formal
words of X which we will write as x = [[x1,1, · · · , x1,m1 ], · · · , [xn,1, · · ·xn,mn ]] to GεF (X)(x) =
εT (X)(x) = [x1,1, · · · , x1,m1 , · · ·xn,mn ], and the unit ηX : X → T (X) simply maps x 7→ [x].

The monad unit laws can be deduced because µ([[x]]) = [x]. The associativity law requires
that, given a 3-dimensional word in the set X, flattening is associative on axes: flatting axis 1
and 2 then flatting that with axis 3 is the same as flatting axis 2 and 3, then flatting 1 with the
result (notice the order of axes is respected). This is, of course, true.

The free monoid adjunction gave us what in Haskell is called the List monad. It naturally
gave rise to flattening, mapping functions on elements, returning singletons, and the very useful
flatMap of type [A] -> (A -> [B]) -> [B] which is simply the bind of the monad and which
maps [x1, x2, · · · , xn] to the concatenation of f(x1), · · · , f(xn).

Similarly, the Maybe monad can be obtained from the free forgetful adjunction where, the
free functor maps a type A to the type A+ 1, the disjoint union of A and a fixed singleton type
1 and the forgetful functor simply forgets the fact that A+ 1 is a disjoint union with 1.

3.4 Properties of monads over Cartesian closed categories

Note: this section remains unfinished

Definition 3.5 (Lax monoidal functor). If (C ,⊗, IC) and (D , •, ID) are monoidal categories, a
lax monoidal functor F : C → D is a functor with a natural transformation φA,B : FA •FB →
F (A⊗B) and a morphism ψ : ID → FIC satisfying the following coherence conditions.

(FA • FB) • FC FA • (FB • FC)

F (A⊗B) • FC FA • F (B ⊗ C)

F ((A⊗B) ⊗ C) F (A⊗ (B ⊗ C))

αD;F A,F B,F C

φA,B•idF C idF AφB,C

φA⊗B,C φA,B⊗C

FαC ;A,B,C
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FA • ID FA • FIC

FA F (A⊗ IC )

idF A◦ψ

ρD;F A φA,IC

FρC ;A

ID • FA FIC • FA

FA F (A⊗ IC )

ψ◦idF A

λD;F A
φIC ,A

FλC ;A

Remark 3.1. (Laxity and strictness)

• If F : C op → Dop is a lax monoidal functor on the opposite categories, it is said to be
colax monoidal from C to D .

• If ϕ and ψ are isomorphisms, F is said to be pseudo-monoidal.

• If ϕ and ψ are identity morphisms, that is FA • FB = F (A ⊗ B) and FIC = ID , F is a
strict monoidal.

Definition 3.6. (Applicative functor) Let C be a Cartesian closed category and F be an
endofunctor of C . F is said to be applicative if it admits a natural transformation η : idC → F
and a natural transformation ϕA,B : F (A → B) → (F (A) → F (B)) (as exponentials) such that
certain coherence conditions are met.

Notice that the existence of η and ϕ defines a morphism ϕA,B ◦ηA→B : (A → B) → (F (A) →
F (B)). However, F is a functor, and so it naturally has an action on morphisms, so it provides
a morphism FA,B : (A → B) → (F (A) → F (B)) which is just the morphism map of F at
Hom(A,B). We require that these two maps be the same.

(A → B) F (A → B)

(F (A) → F (B))

ηA→B

FA,B

ϕA,B

In particular, this means that ϕA,A(ηA→A(idA)) = idF (A). Fhis is known as the

Theorem 3.2. (Applicativity of monads) Let C be a Cartesian closed category, and T be a
monad over C . Then, T is applicative, that is, there is a natural transformation ϕ : T (A →
B) → (T (A) → T (B)).

4 String diagrams
In categories without a monoidal structure, there is a unique canonical composition of mor-
phisms, namely, horizontal composition of f : A → B and g : B → C into g ◦ f = f ; g : A → C.
That composition is monoidoidal, that is, it’s associative and has units for each object, in other
words, it’s like a monoid, but ‘horizontally categorified’. Horizontal categorisation is, roughly,
the process of generalizing an algebraic structure to a structure on categories by seeing the
original algebraic structure as a category with one object. The rule for naming such categories
is to add an ‘oid’ postfix to the name of the structure. A monoidoid is simply a category.

The use of the term ‘monoidoidal’ explains the connection between categories and monoids,
and allows us to introduce simpler, cleaner notation for morphism composition in categories.
Compositions are simply (well constructed) words in the alphabet being the set of morphisms
in the category. So, instead of writing (f ; g);h, we may simply write fgh which is also equal to
f ; (g;h). This common notation simplifies matters of associativity and unitality.

In a (strictly) monoidal category, there is another way to compose morphisms: vertical
composition. If f : A → B and g : C → D, f ⊗ g : A ⊗ C → B ⊗ D. This composition is
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also (strictly) associative and (strictly) unital, which gives rise to the fun name of ‘monoidal
monoidoid’ for monoidal categories reflecting the double monoidoidal structure.2

This double monoidal structure inspires string diagrams, which are essentially two-dimensional
words: horizontal composition is written horizontally and vertical composition vertically.

For example, the following string diagram represents the morphism f⊗(g⊗h) = (f⊗g)⊗h.

A f D

B g E

C h F

Technically speaking, this diagram is built inductively either as f ⊗ (g⊗h) or as (f ⊗g)⊗h.
We represent this parenthesizing graphically as a dotted rectangle, but because the morphisms
represented are morphisms of a strict monoidal category, the two constructions coincide, so
there is no need to keep track of the construction steps, and the dotted rectangles are optional.

A f D

B g E

C h F

=

A f D

B g E

C h F

Just as an empty word represents the identity morphism, an empty box represents the
identity morphism in string diagrams. Here’s an example of the identity on an object A.

A A = A A = A

Similarly, the identity object of the category is denoted by an empty line. So the identity
morphism on the identity object can be represented by an empty dotted box, or by a completely
empty diagram.

This empty box notation explains the intuitive unitality laws for vertical composition.

A f B
= A f B =

A f B

Similar unitality and associativity laws apply to horizontal composition.

f = f = f

f g h = f g h

However, another form of associativity appears by combining the two operations, namely,
the possibility of interchanging the two kinds of composition. This is one of the equations that’s
starting to appear a little simpler using string diagrams; however, we will see that they have
much more use than that.

2https://ncatlab.org/nlab/show/monoidal+category
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f g

h k

=
f g

h k

In text, this is the equation (f ; g) ⊗ (h; k) = (f ⊗ h); (g ⊗ k).
The equations given allow us to safely ignore some intuitive transformations of the drawing

of a diagram. For example,

f

g
=

f

g

=
f

g

=
f

g

=
f

g

Sometimes, instead of writing the name of a morphism in a box, we may use a special symbol
for it, like a solid or empty dot for convenience, especially when it involves composite objects
as domain or co-domain. Here is an example of an operator f : A⊗ A → A denoted as a solid
disk.

A
•

A

A

4.1 String diagrammatic representation of monoidal laws

In a monoidal category C , we recall that a monoid M is an object of C with morphisms
µ : M ⊗M → M and η : idC → M such that µ is associative and η acts as the (left and right)
identity for µ. If C is strictly monoidal, we can represent η and µ using string diagrams. In
which case, the associativity and unitality laws become simple equations of string diagrams. If
we represent µ as a solid dot and η as an empty dot, we can write the associativity and unitality
laws as follows.
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•

• =
•

• (9)

•
◦

= (10)

◦
• = (11)

As we have defined them earlier, monads over a category C are monoids in the strictly
monoidal category [C ,C ] of endofunctors of C . [C ,C ] being strictly monoidal, we can use
equations of string diagrams 9, 10, and 11 to express the monadic laws of associativity and
unitality.

4.2 More types of string diagrams

String diagrams have found very many applications because of their versatility and flexibility
in denoting complex morphisms with intuitive drawings. We will give some examples here.
Example 4.1. (Symmetric monoidal category) A symmetric monoidal category is a monoidal
category where we can commute products. Formally, it’s monoidal category C with a natural
isomorphism σX,Y : X ⊗ Y → Y ⊗X satisfying σX,Y ;σY,X = idX,Y = idX ⊗ idY (and coherent
with associators and unitors).

If the category is strictly monoidal, we can represent σX,Y as a swap of wires.

Y

YX

X

The equation from above then translates to untwisting a double swap.

Y

X X

Y

=
X Y

Y X

Example 4.2. (Braided monoidal category) The swapping operation from above is an isomor-
phism X ⊗ Y → Y ⊗X with extra properties (the untwisting). We could instead ask for fewer
properties. By doing that, we get braided monoidal categories. Braided (strict) monoidal cate-
gories are strict monoidal categories with a natural isomorphism βX,Y : X ⊗ Y → Y ⊗X which
may or may not satisfy the condition βX,Y ;βY,X = idX⊗Y from symmetric monoidal categories.
A braiding βX,Y is also denoted as a swap of lines but which respects which line went first, i.e.
it is a 3-dimensional passing of lines one in front of the other.

βX,Y =
Y

YX

X

β−1
X,Y =

Y

YX

X
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Y

X

Y

X
=

X X

Y Y

We see with these diagrammatic representations that two string diagrams represent the same
morphism when, seen in 3 dimensions, the strings can slide over one another. However a braid
βX,Y ;βY,X cannot visually be disentangled without cutting the strings (i.e. adding an extra
equation). So the braids may provide non-trivial endomorphisms of X ⊗ Y .

Y

X X

Y

Due to the topological significance of the string diagrams in braided monoidal categories,
it’s common to find applications involving swaps that ‘leave trace’. For example, in topological
quantum computing, the string diagram above can be seen as a pair of paths in 3-dimensions,
the left to right dimension being time, and the other two dimensions (down-up and in-out) being
dimensions of space. When X and Y are seen as ‘anyons’ which are quasi-particles appearing
only in 2-dimensional systems, this braiding cannot be disentangled as it would require the paths
to intersect, which is not possible for this type of particles according to the Fermi principle which
states that it’s impossible for two of these particles to have the same quantum state. Switching,
say, anticlockwise, the positions of two anyons twice results in a different state than if they were
not switched. This is in contrast with the usual 3-dimensional particles which are of two types:
fermions and bosons. For fermions like electrons, this braiding (switching the positions counter-
clockwise) applied twice leaves you with the original quantum state; therefore, if the category
concerned Fermion objects, the braided monoidal category would be a symmetric monoidal
category with this braiding. And in the case of bosons like photons, swapping X and Y leaves
the system in the same quantum state (bosons do not abide by the Fermi principle and can
be in the same quantum state, that is, lines can intersect). Categorically, this means that the
braiding is the identity and the category is strictly symmetric. Topological quantum computing
encodes computations as string diagrams consisting of different braidings and relies on anyons
to make sure that the braidings do actually provide a non-trivial structure, and on the Fermi
principle to ensure the stability of the computation by forbidding the disentanglement of braids.

5 Wedges and ends, cowedges and coends.
In this section, we will be interested in some special kinds of limits of functors of the form
F : C op × C → D . When D = Set, which is often the case, we call F a profunctor. A prime
example of profunctors is the hom functor. We are in particular interested in the behavior of F
on the diagonal. F is a functor on each component, but because it is a contravariant in the first
and covariant in the second, A → F (A,A) does not define a functor, so it’s not possible to define
limits and colimits of it because they require the use of the notion of natural transformations.
However, we can define a more general notion: dinatural transformations.

Definition 5.1 (Dinatural transformation). If F,G : C op × C → D are functors, a dinatural
transformation α : F •→ G is a family of morphisms αA for A : C such that, for all A,B : C ,
the following diagram commutes.
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F (A,A) G(A,A)

F (B,A) G(A,B)

F (B,B) G(B,B)

αA

G(idA,f)F (f,idA)

F (idB ,f)

αB

G(f,idB)

Definition 5.2 (Wedge, cowedge). If F : C op × C → D is a functor, a wedge of F is an
object A : D and dinatural transformation α : A •→ F . Dually, a cowedge admits a dinatural
transformation α : F •→ A.

If f : A → B and B is the summit of a wedge of F with dinatural transformation α and
such that α ◦ f is a dinatural transformation, f can be seen as a morphism of wedges from the
wedge on A to the wedge on B. We can thus form the category of wedges.

Definition 5.3 (End, coend). An end is a universal wedge, that is an initial object in the
category of wedges. Dually, a coend is a universal cowedge, that is, a terminal object in the
category of cowedges.

An end of F : C op × C → D is denoted
∫
C:C F (C,C) and a coend is denoted

∫ C:C F (C,C).

6 Optics
Optics are inspired from computer science and provide ways to inspect and modify parts of a
data structure without having to change the remainder of the structure. The concept of mixed
optics in category theory generalises that a lot.

6.1 Lenses

Lenses originated as a way to split a complex record data structure into a focus and a context.
Here is an example. Suppose we would like to write a program that browses Wikipedia. Some-
where in our programming process, we are likely to need to split URLs of the form https://en.
wikipedia.org/wiki/Category_theory into the context https://en.wikipedia.org/wiki/
and the focus Category_theory in such a way that we are able to replace the focus with
some other focus Functor (another Wikipedia page), and reconstruct our URL to obtain
https://en.wikipedia.org/wiki/Functor.

We will need two functions to do the task: a view function which takes in the string URL
and returns a pair of strings consisting of the context and the focus, and another update function
which takes in a pair consisting of the context and a new value for the focus, and reconstructs
the complete URL. In other words, we need functions l : String → String × String and r :
String × String → String. More generally, we need functions l : S → M ×A and r : M ×B → T
where the idea is that we change the focus A to the focus B, and thus change the overarching
structure S to the structure T , but we keep the same context M .

To formally express the fact that M remains untouched, we need to somehow make sure to
separate M from A and B. This means then that any map on M can be applied when M is
paired to the focus A or to the focus B without changing the result T , so the replacement of
A by B is not dependent on M and M just “floats around” to accompany the focus so that
we are able to reconstruct the initial data structure. This means that we need to quotient
the set of pairs (M, l, r) by the relation: (M, l1, r1) (N, l2, r2) iff there exists l : S → M × A,
r : N ×B → T , and f : M → N such that
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(l1, r1) = ((f × idA) ◦ l, r)
(l2, r2) = (l, r ◦ (f × idB))

This set is precisely
∫M :C C (S,M ×A) × C (M ×B, T ). We call elements of this set lenses

from (S, T ) to (A,B).

6.2 Prisms

Prisms are obtained from lenses by replacing the product with a sum (coproduct). In other
words, the set of prisms from (S, T ) to (A,B) is the set

∫M :C C (S,M + A) × C (M + B, T ).
Prisms are especially useful in situations where it’s not always possible to extract an A from an
S. For example, in parsing a string into an integer, if indeed the string represents an integer,
we can safely return an integer; however, if the string, for example, contains letters, we cannot
parse it into an integer, we can instead return the string itself, or some error, perhaps. We can
thus define parsing function l : String → String + Int. To complete the parsing, we can also
define a printing function, possibly for something other than integers r : String+Float → String.
The pair (l, r) forms a prism which focuses on the integer in a string, if possible, and is able to
follow that by a replacement, if we have an integer, by a float (perhaps we may choose it to be
the same number written with .0 at the end).

6.3 Optics

Optics are generalizations of lenses and prisms. An optic from (S, T ) to (A,B) is an element of
the set

∫M :C C (S,M⊗A)×C (M⊗B, T ) where a changing definition of the monoidal operation
on C changes the kind of optic we’re dealing with. In the case of a Cartesian monoidal category
C , ⊗ is the categorical product, so optics are lenses. If C has all finite coproducts, then by
defining a tensor product A⊗B = A+B on C , we obtain prisms. For most of computer science,
this is all that’s necessary because we are always, or almost always working within the same
category, the category of types and functions between them.

6.4 Actions of categories, or actegories

We would like, at that point, to generalize M ⊗ A and M ⊗ B to have, possibly, M , A, and
B belonging to distinct categories, M , C , and D . Of course, if M and A belong to different
categories, it doesn’t make sense to talk about their tensor product. Instead, as long as M
belongs to a monoidal category M , we can define M • A, the action of M on A in a fashion
very similar to the action of classical monoids (i.e. monoidal sets) on sets.

In other words, we start with a monoidal functor ϕ : (M ,⊗, 1) → ([C : C ], ◦, idC ). Depend-
ing on the author, this can have the strictness and laxity that the author desires; here we will
assume we are dealing with pseudo-monoidal functors. Using ϕ, we can define an action of the
monoidal category M on C as follows for an object A and a morphism f in C .

M •A = ϕ(M)(A)
M • f = ϕ(M)(f)

It’s also worth nothing that since ϕ is a functor, it has values on morphisms, so if f : M → N
in M , ϕ(f) = f • − : M • − → N • − is a natural transformation in C .

The fact that ϕ is a pseudo-monoidal gives us generalizations of the basic properties of
actions of monoids on sets.
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IM • − ∼= idC

(M ⊗N) • − ∼= M • (N • −)

We say that C is an M -actegory to mean that it is a category with an action from M .

6.5 Mixed optics

Given a monoidal category M and two M -actegories C and D , the category of (C ,D)-mixed
optics has objects (A,B) with A : C and B : D and morphisms (S, T ) → (A,B) elements of the
set

∫M :M C (S,M •A) × D(M ∗B, T ).
If M = C = D , the tensor product in M is itself an action on M , just like a group acts on

itself by multiplication. Therefore, the optics mentioned in 6.5 are nothing more than special
cases of mixed optics.

A List of interesting monads in computer science
The monads in this section are chosen as endofunctors of Hask and the examples will be in the
Haskell language, when necessary.

A.1 Reader

The reader monad allows one to encode computations that are dependent on a certain context,
or a certain value to be ‘read’. This can, for example, be used to pass global constants or
configuration settings for a program without having to reference them explicitly every time.

If the desired environment type for the reader monad is A, then the monad is defined as the
endofunctor −A, mapping X to the type of functions out of A into X, so that all the values
treated of type X in this context would actually be dependent on the global context of type A.

The unit (return) of the reader monad returns a constant value, independent of the context
A. That is, ηX : X → XA;x 7→ (− 7→ x), and the multiplication consists of realizing that the
type asks for the global context twice when it only needs it once: µX : (XA)A → XA which
for a function (a 7→ (b 7→ x(b))) produces the function a 7→ x(a) which only reads the (same)
context once.

A.2 Writer

The writer monad is, in a sense, dual to the reader monad. Here, the values don’t depend on
any context, but the computations can produce ‘things’ that we need to keep, but that don’t
affect the computation. The prime example of that is logging. It’s often the case that we want
to keep logs of what the program has done while it’s running so that we can diagnose it later
for errors, or for statistical purposes, or for legal purposes; however, we would not like to have
to carry the logs into every single computation we do explicitly partly for practicality partly
because they do not affect the computations at all.

The writer monad is also dependent on the type of ‘written’ data. However, there are con-
ditions: the ‘writing’ type must have a monoidal structure. This is because the most important
example of write monads are log monads which need to append text to another piece of already
written log text and that may simply produce no log sometimes (empty string). If (M, ·, 1) is
the monoidal type of the written data, then the writer monad for M is defined as the functor
− ×M with the following join and return transformations.
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ηX : X → X ×M

x 7→ (x, 1)
µX : (X ×M) ×M → X ×M

((x,m),m′) 7→ (x,m ·m′)

A.3 IO

Perhaps one of the most impressive uses of monads in programming is their ability to encode
impure computer functions which can read and write data in memory, on disk, over a network,
etc... into pure functions that do none of that. The secret is to find implement the ‘dirty’ work
of input and output separately in some abstract definition of an endofunctor IO. IO(A) is a
type representing values of type A produced after some input/output operation. For example,
a element of type IO(N) could be ‘read user input and return it interpreted as an integer’, or if
1 is the type with a single element ∗, elements of IO(1) are IO operations that don’t produce
any value (or that we don’t care about keeping the values they possibly produce). They can
also be combinations of input and output; for example, we may want to print a prompt on
the screen (output), then read a response from the user (input) and finally produce some value
parametrized by the user’s response.

The exact implementations are irrelevant to the programmer because they are completely
abstracted away by the IO type.

The return of the IO monad ηA : A → IO(A) maps a value a to a computation which does
not actually do any I/O computations and always return a. And the join of the IO monad
µA : IO(IO(A)) → IO(A) maps a sequences I/O operations. An element of IO(IO(A)) consists
of an I/O operation, which, after it’s executed, return another I/O operation to execute which
itself returns a value of type A. µA is then the function that combines the two operations
sequentially into one larger operation.

In summary, the IO monad is monadic precisely because of the monoidal structure of I/O
operations: there is a do-nothing operation and a way to sequentially combine operations.

A.4 Continuation

A somewhat common pattern in functional programming is the ‘Continuation-Passing Style’ or
CPS. In CPS, a function might not necessarily do all the work to produce a value, but once
it’s done its own job, can be composed (on the left) by a ‘continuation’ function which does the
rest of the work from then on. CPS allows for finer control of the order of computations and
can allow for optimization of program efficiency. The main take away is that the continuation
of the computation is passed onto the previous chunk, so the ‘past’ computation can control
how the ‘future’ continuation computations are to be done.

To define the monad, we have to fix a final result type R. Then, instead of using values of
type A, we use continuations of the computation after A. We define Cont(A) = (A → R) → R.
Instead of using a : A, we use functions that, given a continuation after A, that is, given a
function A → R, can complete the computation and produce R.

The simplest form of that is to use an element of A to produce R from A → R. This provides
us with the unit of the monad: ηA : A → ((A → R) → R) which maps a : A to (f 7→ f(a)).
The multiplication is a bit more complex notationally:

µA :((((A → R) → R) → R) → R) → ((A → R) → R)
f 7→ (g 7→ (f(h 7→ h(g))))
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What all of this means in English is that applying the composition Cont(Cont(A)) to a
function Cont(A) → R allows us to continue the computation after we have reached Cont(A), so
it encodes reaching Cont(A) along with having control over how to do the next operations. But
reaching Cont(A) itself encodes reaching A and information on how to proceed after reaching
A. So if we reach A, and are provided with a continuation function from A to R, we are able
to ‘rewind’ doing the inner continuation first to produce a continuation function Cont(A) → R
which can then be used with the outer continuation to finalise the computation and reach R.

This again exploits the monoidal structure of operations.

A.5 Parser

Another frequently used construction is the parser monad. Parsing text means discovering
structure in a string of characters. For example, an appropriate parser for addition of integers
could interpret the string of characters "21 + 45" as meaning the number 21, the + operator,
and the number 45, in that order. A function that would parse "21 + 45" is then expected to
have an input type String, that is, a string of characters, and an output type some structure
that can encode integers, and operands, and their relation. Often, this is called an abstract
syntax tree and is indeed a tree, but parsing is also usually done in many smaller steps. The
critical situation with parsing making it an impure function is essentially the fact that the type
of the output is not easily determined (is what we’re reading an integer, a floating number, an
operator, or something else?) and sometimes parsing is simply impossible if it doesn’t fit any
syntax we define. For example, if we define a language for addition, and then we decide to use
operators unknown to this language, for example, the multiplication operator *, it’s impossible
to parse the string of characters. Furthermore, suppose we encounter a string "21 + 45 * 7".
We will be able to parse all the way until the integer 45, at which point we will fail to parse
* and have to stop the parsing with a ‘syntax error’ message. So we need some way to detect
and propagate errors, while keeping track of the parsing results and the remaining string to be
parsed.

We define then the functor P : Hask → Hask which, to a type A maps the type S →
M(A× S). Here, S is the type String, and M is the Maybe monad discussed previously. The
explanation is that a parser whose job is to find a value of type A in a string, will have to read
in a string, and if it’s able to find a value of type A, return that value along with the remaining
string for further parsing. The unit and multiplication of the monad can be given as follows.

ηA :A → S → M(A× S)
a 7→ (s 7→ (a, s))

µA :S → M(S → M(A× S) × S) → (S → M(A× S))
f 7→ (s 7→ (f(s) >>=M ((p, s′) 7→ p(s′))))

where >>=M is the bind for the Maybe monad.
The effect of the Maybe bind is to propagate syntax errors to the next potential parsers so

that we stop parsing the rest of the string if we reach a syntax error at any point during the
parsing. If all goes well, and we are able to parse, the join (multiplication) of the parser monad
asks us to read the string and obtain a parser out of it which can then be applied to the rest of
the string to finally parse an A.
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