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Abstract

A connected k-chromatic graph such that the deletion of any pair of adjacent vertices
causes the remainder of the graph to have chromatic number k − 2. Erdős conjectured in
1967 that Kk is the only k-chromatic double-critical graph. A solution of the double-critical
conjecture goes a long way in solving the Erdős-Lovász Tihany conjecture. In this paper,
we summarize the current directions for and hurdles against the current research in pure
theoretical terms and in computational approaches.

Definitions and notation

We denote by χ(G), the chromatic number of
G, that is the least number of colors in a proper
coloring of G. ω(G) is used to denote the clique
number of G, the size of the largest clique in
G. α(G) denotes the independence number of
G, the size of the largest independent set in G.

We will use confound identity with isomor-
phism and write H = G for H ∼= G, and we
will use H ≤ G and G ≥ H to denote that H
is a subgraph of G up to isomorphism. A such,
H < G and G > H denote that H is a proper
subset of G.

An η-star is the closed neighbourhood of a
vertex whose (open) neighbourhood is an inde-
pendent set of size η. A claw is a 3-star, and a
2-star is the same P2, a path of length 2.

G is H-free if H cannot be found as an in-
duced subgraph of G.

Unless otherwise mentioned, throughout

this document G is a k-chromatic double-
critical graph.

1 Introduction
A double-critical graph of chromatic number k
is a k-chromatic graph that is connected, and
such that the deletion of any two adjacent ver-
tices x, y results in a graph G − {x, y} that is
(k − 2)-chromatic. In 1967, Erdős conjectured
that Kk is the only k-chromatic double criti-
cal graph. The conjecture has since remained
open with few results known about it.
Conjecture 1.1 (Double-critical graph con-
jecture). If G is k-chromatic double-critical,
then G = Kk.

1.1 Erdős-Lovász Tihany conjecture

The double-critical graph conjecture is a di-
rect corollary of the following conjecture, also
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by Erdős and Lovász and of which even less is
known:

Conjecture 1.2 (Erdős-Lovász Tihany). For
all x, t ≥ 2, and all graphs G, if ω(G) < χ(G),
then there exist disjoint G1, G2 ≤ G such that
χ(G1) ≥ s and χ(G2) ≥ t.

The double critical graph conjecture 1.1 fol-
lows from the Erdős-Lovász Tihany conjecture
1.2 in the case s = 2 and with (possibly) fur-
ther assumptions.

Proof. Let G be a k-chromatic double critical
graph. Take s = 2, t = k − 1. We want to pro-
ceed with contraposition. For any G1 ≤ G, if
χ(G1) < s = 2, then we have ω(G) = χ(G).
Otherwise, if χ(G1) ≥ 2, then, G1 has an
edge xy. Since G2 ≤ G and G1 ∩ G2 = ∅,
G2 ≤ G − {x, y}, and G is double-critical, so
χ(G2) ≤ k − 2 = t − 1 and again we have
ω(G) = χ(G). Take a Kk ≤ G. Select any
edge uv of G, delete u, v. You have that
G − {u, v} is k − 2 chromatic, which means
that u, v ∈ Kk ≤ G. Finally, if w has no
edge on it, then it is an isolated vertex, which
cannot happen since G is connected and with
v(G) ≥ 1.

2 Theory

2.1 η-stars

The conjecture 1.1 can be studied easier on
graphs which are η-star-free. The reason for
that is illustrated in the following sequence of
theorems.

Lemma 2.1. For any η-star-free graph G, if
v ∈ v(G), α(G[N(v)]) = η − 1.

Proof. Suppose S ∈ G[N(v)] is an independent
set with at least η vertices, then, G[S+ v] ≤ G
is an induced η-star.

Theorem 2.2. If G is k-chromatic double-
critical and 2-star-free, then G = Kk.

Proof. G is connected. Take any x, y ∈ v(G),
and an xy-path in G. By induction, assume
you have a path of length 2, since a 2-star is
also simply a P2, we must instead have a tri-
angle, so that xy ∈ e(G). So G = Kk.

Theorem 2.3. If G is 5-chromatic double-
critical and 3-star free, then G = K5.

Proof. Take x, y adjacent in G; then, by 2.6
they must share 5−2 = 3 neighbours u1, u2, u3.
But by lemma 2.1, there must be an within
{u1, u2, u3}. Without loss of generality, assume
u1u2 ∈ e(G). Then, {x, y, u1, u2} = K4 ≤ G;
but then by 2.5, we have G = K5.

Theorem 2.4 (Rolek, Song 2017 [RS17b]). If
G is k-chromatic double critical and 3-star free,
and k ≤ 8, then G = Kk.

Theorem 2.5 (Huang, Yu 2016 [HY16]). If
Kk−1 ≤ G, then G = Kk.

Theorem 2.6 (Huang, Yu 2016 [HY16]). If
xy ∈ E(G), then x, y share at least one com-
mon neighbour in each of the k − 2 color-sets
of G− {x, y}.

These theorems show how forbidding stars
allows one to add edges enough to get complete
graphs. Lemma 2.1 captures the essence of the
power of η-star-free conditions and can easily
prove something like the following.

Theorem 2.7. If G is a k-chromatic double-
critical graph that is also η-star-free with η ≤
k−2, and v ∈ V (G), then G[N(v)] has at least

1
2−log2 3(k − l + 1) edges.

Proof. We have 2n subsets of the vertices of
G[N(v)]. If we add an edge xy, then at
worst we could make 1

4 of the sets become
non-independent. We also know that we have
at most 2η−1 independent sets. By induc-
tion, if we add p edges, we have at least
2n ·

(
3
4

)p
independent sets remaining. There-

fore, 2n ·
(

3
4

)p
≤ 2η−1. From that we obtain

p ≥ 1
2−log2 3(k − l + 1).

2.2 Minors

Interesting work has been also done by Rolek
and Song in 2017 [RS17a] on a weakening of
the conjecture by Kawarabayashi et al.

Conjecture 2.8 (Kawarabayashi, Peder-
sen, Toft, 2010 [KPT10]). Every k-chromatic
double-critical graph has a Kk minor.
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As far as our research has reached, the lat-
est work on minors is by Rolek and Song in
2017 [RS17a] who proved 2.8 until k ≤ 9. In
contrast, the highest number reached for claw-
free graphs is k ≤ 8 also by Rolek and Song in
2017 [RS17b], and the highest number reached
for general graphs remains k ≤ 5 proved in
1986 by Stiebitz with the note that k = 2, 3, 4
are trivial or almost trivial.

3 Computational approaches

3.1 Latest results

Although computational approaches cannot
reach positive answers, there has been some
work on searching for counter-examples, so far
unproductively. Computational approaches to
this problem are riddled with issues and diffi-
culties.

To the best of our knowledge, the latest re-
sults computationally were reached 8 years ago
in 2012 by Pedersen who was not able to dis-
prove the conjecture for graphs with less than
13 vertices.

Theorem 3.1 (Pedersen, 2012 [Ped12]).
There is no non-complete graph on less than
13 vertices.

3.2 Issues

There are many obstacles against computa-
tional searches for this problem which we will
now briefly highlight.

Infinite search space for fixed k

First, it is impossible to settle the issue for
any fixed chromatic number computationally,
because a fixed chromatic number k does not
enforce any upper bound on the number of ver-
tices of G.

Coloring is NP-complete

Almost any approach to computationally solve
the issue requires finding chromatic numbers
of a graph – a problem famously known to be
NP-complete.

Search space is too big

Even for a fixed number n of vertices, the naive
search space of labeled graphs has size 2(n

2).
For n ≥ 13, this is unreasonable.

3.3 Requirements of a practical
search program

In order to effectively search for counter-
examples, a search program must satisfy cer-
tain constraints. We provide here a list of such
constraints with a brief summary of the rea-
soning behind them:

1. Resumability: It ought to be possi-
ble to halt the program and resume it
at will thus allowing the program to
be easily moved between machines and
stopped and resumed according to fund-
ing and interest. This implies a clear,
non-arbitrary method of listing graphs as
well as efficient ways to store state and/or
results.

2. High parallelisability: With high par-
allelisability, we get access to modern
multi-core machines, as well as the pos-
sibility of using cluster computing tech-
nology (e.g. BOINC) which would allow
slow, but sustained computation for low
cost. This also implies that the compu-
tations should be as cross-platform as
possible, not relying on specific architec-
tures.

3. Configurability: It is essential that
one implements a modular program that
can run different algorithms on different
classes of graphs depending on the cur-
rent latest literature. For instance, at
the moment, there is progress with re-
spect to claw-free graphs and it might be
more efficient and useful to restrict the
search to graphs with claws as searching
for claws is polynomial and fast, while
coloring is NP-complete. Later, accord-
ing to theoretical progress (e.g. general
η-stars), that might change, and the pro-
gram must be able to adjust.
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