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Abstract

For a given polygon, it is possible to transform one triangulation into another by flipping
one diagonal for another intersecting diagonal. The minimum number of flips required is
an NP-complete problem for simple polygons and an open problem is whether it is in P or
NP-complete for convex polygons. Among others, an application of a result about convex
polygons is in counting the number of rotations required to transform one binary tree into
another.

We show that flip distance is equivalent to token sliding and examine the resulting class
of ‘cyclical interval graphs’ to which convex polygons correspond and build notions of the
theory of cyclical interval graphs. We finally use these graphs to explain attempts to a
solution of flip distance using this equivalence.
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1 Introduction

1.1 Definitions

Definition 1.1 (Convex polygon). A convex polygon is a polygon such that its interior is
convex; i.e. any line segment between any two points x, y in the interior of the polygon lies
completely inside the polygon.

Definition 1.2 (Triangulation). For a polygon, a maximal set of pairwise non-intersecting
diagonals is called a triangulation of that polygon.

Definition 1.3 (Flip). For a given polygon P and two triangulations T, T ′ such that T − T ′ =
{δ} and T ′−T = {δ′} and such that δ, δ′ are intersecting diagonals, the operation (δ, δ′) is a flip
transforming T into T ′. We will write (δ, δ′) : T 7→ T ′ to indicate the operation and its action
on T .

Figure 1: A flip (δ, δ′). δ is the dotted red line (removed), and δ′ is the solid red line (added).

Theorem 1.1 (Flip graph). Triangulations of a polygon form an undirected graph according to
the flip operation.

Proof. If (δ, δ′) : T 7→ T ′, then (δ′, δ) : T ′ 7→ T .

Problem 1.1 (Flip distance). The flip distance between triangulations T , T ′ of a polygon P is
the distance between T and T ′ in the flip graph of P ; i.e., the length of the shortest sequence of
flips required to transform T into T ′, provided that is possible. The flip distance problem asks
whether the distance between two triangulations T , T ′ is at most k.

1.2 Application

The flip distance problem is particularity interesting for convex polygons because of a corre-
spondence found in [STT86] to rotation distance, which is another reconfiguration problem
concerned with binary trees.

Definition 1.4 (Rotation). For a rooted tree T , consider a structure where x is a vertex with
y as a parent and α, β as child subtrees, and y has γ a subtree disjoint from x. The rotation of
T at x replaces the subtree of y with one where x is the root, y is one of is children while the
other is α, and β, γ are children of y. A pictorial representation can be found in figure 2.

Problem 1.2 (Rotation distance). The rotation distance problem asks whether, given two
rooted binary trees T , T ′, it’s possible to transform T into T ′ in at most k rotations.
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Figure 2: A tree rotation at x.

1.3 Current status

Currently, it is known that, on simple polygons, which are polygons that do not have self-
intersections and split the plane into exactly two regions: an interior and an exterior, the
problem is NP-complete [AMP15]. However, it is an open problem whether NP-hardness is
maintained for convex polygons. As explained above, the answer to the convex case matters for
more than classification, and work in this paper shows that the convex case is in fact a very
special case (corollary of theorem 4.1).

2 Token sliding
Flip distance can be reduced (polynomially) to token sliding, which is a problem about inde-
pendent set reconfiguration. The advantage of this reduction is that more results are known
about token sliding and it is possible to solve our problem without reference to triangulations.

Problem 2.1 (Token sliding). Given a graph G and two independent sets I, I ′, a token slide
consists of replacing u ∈ I by v 6∈ I such that I − u + v is an independent set and uv ∈ e(G).
The token sliding problem asks whether I ′ is reachable from I using at most k token slides.

Definition 2.1 (Diagonal graph). For a polygon P , consider the undirected graph where ver-
tices are diagonals, including the edges, and they are adjacent whenever the diagonals intersect.
We call this graph the diagonal graph of P and will denote it GP .

Theorem 2.1 (The reduction). Flip distance between T , T ′ is equivalent to token sliding be-
tween T , T ′ as independent sets of the diagonal graph.

Proof. For a graph G and a triangulation T is a set of diagonals of P ; therefore, it is a set
of vertices of GP . Furthermore, the diagonals from T are pairwise non-intersecting; therefore,
they are pairwise non-adjacent vertices of GP . A flip picks a pair of intersecting diagonals of
which exactly one is in T , removes it, and picks the other one. This corresponds to a token
slide in GP . The converse holds by the same reasoning.

3 Cyclical interval graphs

3.1 Introduction

By reducing flip distance to token sliding, we now examine the structure of the diagonal graphs
of convex polygons. It turns out, these graphs are similar to interval graphs, but not precisely
so. We will call them cyclical interval graphs. The reason for the name will soon become
apparent once we examine regular n-gons.
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Definition 3.1 (Cyclical interval graph). A cyclical interval graph is a graph whose vertices
correspond to closed intervals of the real line and such that two vertices are adjacent whenever
the corresponding intervals intersect non-trivially; precisely, if X,Y are two such intervals, then
they are adjacent as vertices iff X ∩ Y is none of ∅, X, Y . We also require that no intervals be
repeated.

Remark. We require non-repetition for convenience in the later definitions; however, there may
be uses for the structure without this condition.
Remark. If the graph is finite, the intervals can be assumed to live entirely in a finite, closed,
interval of the real line. After normalization, this interval can be even be assumed to be [0, 1].

Cyclical interval graphs are the equivalent of intervals graphs when the real line is quotiented
out into a circle; hence the naming. In particular, if we add to the number line a point ∞ =
+∞ = −∞ (equivalent to ‘sticking’ the line together, and can be done with the arctan function),
and allow intervals to use it to bridge +∞ and −∞; i.e., we allow [a, b] where a ≥ b to be an
interval, then, cyclical interval graphs behave like interval graphs in the precise way formalized
below

If [a, b]∩ [a′, b′] = ∅, then there is no edge in interval graphs, nor in cyclical interval graphs.
If [a, b] ∩ [a′, b′] = [a′, b′], then [b, a] ∩ [a′, b′] = ∅ and there is no edge just as in interval graphs.
Here, [b, a] is one of those intervals that contain ∞. Symmetry insures the other case.

The same trick of adding the point∞ can be used when the graph is finite, and infinities are
not introduced except symbolically; i.e. it has nothing to do with the halting of a computation.

Figure 3: A visual representation of why [a, b] and [d, c] do not intersect even though [a, b] ⊆
[d, c]. Consider [d, c] = [c, (∞), d], then [a, b] ∩ [c, d] = ∅.

3.2 Support and precision

We now provide some measures to classify cyclical interval graphs in ways that are relevant to
our study of convex polygons.

Definition 3.2 (Support (general)). If the cyclical interval representation of a cyclical interval
graph G is {[ai, bi]}i∈I , then let the support SG of G in this representation be the smallest
connected closed set containing

⋃
i∈I [ai, bi].

Corollary (Support (finite)). For a finite cyclical interval graph, the support is a closed interval
[a, b]
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Proof. We have finitely many intervals [ai, bi]; each of which having a minimum ai and a maxi-
mum bi. Therefore, the sets {ai}i∈I , {bi}i∈I have a minimum and a maximum respectively, say
a, b respectively.

Then, a, b ∈ SG since a, b ∈
⋃

i∈I [ai, bi], and since SG is connected, then [a, b] ⊆ SG.
Furthermore, since [a, b] is a closed connected set containing

⋃
i∈I [ai, bi], then SG ⊆ [a, b] because

SG is the smallest such set. Therefore, SG = [a, b].

Definition 3.3 (Precision). When possible, a cyclical interval graph is of precision k ∈ N if k is
the least number such that G can be represented using integer intervals and support of length
k − 1. If no such k is found, the precision is defined to be +∞.

Theorem 3.1. Any cyclical interval graph of precision k ∈ N can be represented using integers
on [1, k].

Proof. If the support found is [η, η+k−1], then subtract η−1 from each end of each interval.

Theorem 3.2. Any finite cyclical interval graph with intervals with rational endpoints has a
finite precision.

Proof. Out of all finitely many interval endpoints, pick the one with the largest denominator.
Multiply all endpoints by the given denominator. This homothety preserves intersections; how-
ever, now we have integer endpoints. Since G is finite, the support is a finite closed interval
with integer endpoints; therefore, of integer length.

Remark. This means that any cyclical interval graph whose cyclical interval representation is
possible in standard representation in finitely many bits has a finite precision. This characterizes
classes of cyclical interval graphs in a similar way to other measures such as the clique number
ω, and the chromatic number χ for general graphs.

Definition 3.4 (Complete cyclical interval graph of precision k; CIKk). For any natural k,
the complete cyclical interval graph of precision k, denoted CIKk is the graph with includes all
integer intervals from [1, k] exactly once.

Theorem 3.3. Any cyclical interval of precision k which also has a maximal representation in
a support of length k − 1 is isomorphic to the complete cyclical interval graph with precision k.

Proof. Using theorem 3.1, we can get a representation on [1, k] which must also be maximal.
Therefore it has the same representation as the complete cyclical interval graph; thus, it is
isomorphic to the CIKk.

Theorem 3.4. Any finite cyclical interval graph with intervals with rational endpoints is an
induced subgraph of some complete cyclical interval graph.

Proof. Using 3.2 and 3.3, we get that the graph is k-precise and therefore, that its vertices are
a subset of the vertices of CIKk. As for the edges, they are not determined by the graph itself,
rather by the intersection of the intervals which is completely inflexible and predetermined after
picking the intervals. Therefore, we have an induced subgraph of CIKk.

The importance of theorem 3.4 is that it ensures that precision is a stable concept for which
completeness makes sense. Finally, we define an open version of cyclical interval graphs which
we will use later.

Definition 3.5 (Open cyclical interval graph). An open cyclical interval graph is a cyclical
interval graph with open intervals instead of closed intervals.

Remark. Any open cyclical interval graph of precision at most k can be represented as a cyclical
interval graph of precision at most 3k−2 by replacing (a, b) with [3a+1, 3a−1] for a, b integers.
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4 Connections to flip distance
Theorem 4.1. The diagonal graph of any simple n-gon is an at most n-precise open cyclical
interval graph.

Proof. Number the vertices starting from some arbitrary vertex and moving in the anti-clockwise
direction from 1 to n. Any diagonal can then be represented as (i, j).

Consider all possible diagonals (i′, j′) where (i′, j′) ⊆ (i, j); i.e. i ≤ i′ ≤ j′ ≤ j. If i′, j′

appear both on the same side of the line (ij), then (i′, j′) cannot intersect (i, j).
Otherwise, suppose (i′, j′) intersects (i, j), then, since we have a simple polygon, the edges

going from i′ to j′ can only cross the (ij) line strictly outside the [ij] line segment at some point
a. Now, consider the continuous deformation of [i′a] into [i′j′] by moving a to j′ across the
edges of the polygon. We know that [ja] is not inside the polygon because otherwise j would
be an internal point, which is impossible in simple polygons; therefore, at some point across
[i′a], there must have been a last point y0 in the polygon such that y0 6= a and [y0a] is not
in the polygon. However, for the point j′, we assumed the diagonal [i′j′] exists; therefore, y1,
the point that was continuously transformed from y0 must have become after a. Because the
transformation is continuous, there must have been some point where y = x (where x is the
point that is moving from a to j′). However, this is a self-intersection which is impossible in
simple polygons.

Figure 4: Visualization of how the continuous transformation must lead to a self-intersection
point (red circle). There is also possibly a complete area which has intersection (wavy area).

We conclude that such a pathological diagonal does not exist. Therefore, anytime (i′, j′) ⊆
(i, j), we do not have any intersection.

The remaining case is where i < i′ < j < j′. In this case, if the diagonals cross as lines and
they cross outside at least one of the segments, then by the argument above, either one of them
must be an invalid diagonal or the polygon cannot be simple. On the other hand, if they don’t
intersect as lines and instead both i′, j′ lie on one side of (ij), then, consider the diagonal (i′j′).
There must be precisely 2 edges that contain i′, one entering i′ and one leaving i′ according to
the order given to the circumference. Given the strict inequalities, it is impossible that (i′j′) be
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an edge; therefore, it is a proper diagonal completely contained strictly inside the polygon. As
such, in must lie strictly between the 2 edges that contain i′ in terms of angles (otherwise there
would be a third edge containing i′). The same applies to j′. Furthermore, the path after i′ and
until j cannot pass by the segment [i′j′] otherwise we would have a self-intersecting polygon
or (i′, j′) would be invalid. Therefore it must cross (i′j′) from outside [i′j′]. Moving across the
edges from i′ to j then to j′, at some point, we must close the loop i′ · · · j · · · j′i′ with the added
diagonal (i′, j′). Since the diagonal (i′, j′) must be between the two edges on j′, one of the
edges of the polygon must be inside the loop. However, this edge cannot leave the loop by the
edges of the polygon because that would create self-intersections, and it cannot leave through
the diagonal (i′, j′) as that would invalidate it as a diagonal. Therefore, this case is impossible
and (i, j), (i′, j′) must always intersect in this case.

What we have is a cyclical interval graph realized by a representation using integer intervals
from [1, n]; therefore, at has precision at most n.

Corollary. The diagonal graph of a convex n-gon is the complete open cyclical interval graph
with precision n.

Proof. Every pair of vertices makes up a line that is completely inside the polygon due to
convexity. Therefore, every interval in [1, n] represents a unique diagonal or edge; thus, the
graph is complete.

Remark. Notice that this corollary is an equivalence, meaning that if the diagonal graph of an
n-gon is the open CIKk, then this polygon must be convex because it has all of the possible
diagonals. This means that we were able to completely capture what convexity means in very
different, and possibly more familiar terms as the completeness of a graph.

One related problem that seems promising is token sliding on proper interval graphs. Proper
interval graphs are interval graphs where no interval is properly contained in another one. The
difference between these graphs and cyclical interval graphs is that in cyclical interval graphs,
we only require the non-existence of an edge between intervals that contain one another, while
in proper interval graphs, it is required that the intervals never exist simultaneously.

Incidentally, token sliding on proper interval graphs has been shown to be in P in [YU21].
However, the slight relaxation of the condition for proper interval graphs to get cyclical interval
graphs makes the problem NP-hard

Theorem 4.2. Token sliding on cyclical interval graphs is NP-hard.

Proof. Triangulation on simple n-gons is NP-complete[AMP15], yet can be poly-reduced to token
sliding on open cyclical interval graphs. Therefore, the latter must be NP-hard. (Closed) cyclical
interval graphs include also include polynomially larger representations for open cyclical interval
graphs. Therefore, token sliding on cyclical interval graphs is NP-hard in general.
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5 Conclusion
The results from the given work are many-fold. Primarily, the focus is on using the knowledge
about the diagonal graph of convex polygons to solve the problem of the complexity of flip
distance on such polygons. The main contributions provided by this paper can be summarized
as the following.

1. The introduction of a very basic framework for studying cyclical interval graphs (section
3).

2. The characterization of the diagonal graphs of simple n-gons as open cyclical interval
graphs of precision at most n (theorem 4.1).

3. The faithful specialization and reformulation of the convexity condition as the complete-
ness condition on open cyclical interval graphs (corollary of theorem 4.1).

4. One complexity-theoretic result on the NP-hardness of token sliding on general cyclical
interval graphs.

However this paper raises other questions, the most important of which is how to proceed
given this structure to solve flip distance on convex polygons. More questions that might be of
interest are listed below.

1. Is token sliding on cyclical interval graphs NP-complete or harder (PSPACE-complete)?
What about open cyclical interval graphs? How many, and which conditions do we have
to add to get inside NP and/or inside P?

2. If cyclical interval graphs are analogous to interval graphs when the real line is quotiented
into a circle, then are what would be similar constructions for more complex topological
spaces and which are useful and where?

3. Is the implication of 4.1 an equivalence, and what would an answer to that imply? One
result is that if it is an equivalence, we can reduce token sliding on open cyclical interval
graphs to flip distance on simple polygons, which would make token sliding on open cyclical
interval graphs not only NP-hard, but also NP-complete. My conjecture is that it’s not an
equivalence; however, I could not prove that.
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